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Abstract

Imitation learning is used in leading companies to employ autonomous driving.
However, it requires a large amount of high-quality reference data to train, which
costs time and money to acquire. Reinforcement learning does not require any in-
put data for training, and instead relies on user-provided learning policies to train
an agent to drive, therefore it should contest imitation learning in autonomous driv-
ing. Current success stories with reinforcement learning in real-life applications are
however sparse, although it is popular in small-scale projects in simulated envir-
onments. Neuroevolution has been shown to outperform reinforcement learning in
many problems, and should therefore be considered for autonomous driving. We
present a python implementation using python-NEAT to communicate with Unity
in order to train a vehicle agent to navigate a racing track with set sub-goals. Our
results show that neuroevolution of augmenting topology is well suited for a sim-
plified autonomous driver problem within the limits of a racing track, achieving
good solutions in ten generations for a racing track with ninety degree turns.
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1 Glossary

Cross-over: The process of combining two genomes in sexual reproduction. Gene: A unique
pair of nodes. Gene pool: The union of all genes in the population.
Mutation: The process of introducing new genetic material to an individual.

2 Introduction

Recent progress in machine learning (ML) and artificial intelligence (AI) has shown to become
ever more useful in society, where tasks traditionally maintained by humans now are replaced
by autonomous systems, as seen in warehouse packing [5], manufacturing [15], transport [1],
driving [13], among others. Especially automated driving has become a hot topic, partially due
to companies like Tesla that have invested significant amounts in development in automated
systems for driving their cars [9]. There is no single best approach to design an autonomous
system for driving, although some have been more successful than others in certain contexts.
For instance in virtual systems with a smaller network of roads, and with complete data of the
surroundings of the virtual car, imitation learning has been potent [4]. In the real world, in
actual cars, a combination of real-time image analysis and data from the drivers for imitation
learning seems promising as that is part of what Tesla is integrating into their autopilot [19].
The main problem with this type of learning is that it requires plenty of (good) data to be
generated before the autonomous system can be trained, which costs time and money. Other
approaches, such as using Reinforcement Learning (RL), do not require any training data to
start training therefore more time can be spent on training and tuning the system for the task.
Research exists that uses RL for automated driving, but it seems that successful integration
into physical vehicles like what Tesla has done is rare. Although RL is suitable for autonomous
driving, there are only few success stories, and little literature with real-world autonomous
driving applications [12].

Genetic algorithms (GA) is a branch of AI that focuses on developing methods for training a
system through simulated evolution. It maintains a population of individuals, each correspond-
ing a solution to the system, and performs parallel-search. The population is replaced after
each generation, with bias towards individuals that were considered more fit. Neuroevolution
(NE) is a class of GA that evolves artificial neural networks (ANN) and have been shown to
outperform RL in many problems [18, 17]. Neuroevolution of augemented topologies (NEAT) is
an extension of NE that allows the topology of the ANNs to differ, and this has lead to NEAT
outperforming NE in certain benchmarks [17]. In this project we examine the idea of training
an autonomous system to drive a vehicle on an enclosed race-track using NEAT. This approach
requires no data to commence training, unlike imitation learning, and explores multiple areas
of the search space in parallel, unlike reinforcement learning.

3 Background

NeuroEvolution of Augmented Topologies (NEAT) [17] is an extension of NeuroEvolu-
tion (NE) that evolves Artificial Neural Networks (ANN) of non-fixed topologies. NEAT
solves the problem of crossing differently sized ANNs in a meaningful way.
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3.1 Innovation number

Each gene in a neural network is associated with a global innovation number. These are mapped
incrementally during training when a new gene is discovered in an individual. New genes can be
introduced to the gene pool by mutation. Innovation numbers allow for cross between individuals
of different topology to be made that preserves the structural integrity of the parents. An
individual is described by a sequence of genes.

3.2 Crossover

Crossover is the search operator of NEAT, using the genes of two parents to construct a new
individual. The parents have genes in common if they share genes with the same innovation
number. The child will inherit any disjoint or excess genes from the fitter parent and randomly
inherit the gene configuration of genes that both parents have in common.

Example Let two individuals N1 and N2 have genetic sequences S1 = [G0, G2, G3, G5, G7]
and S2 = [G0, G1, G4, G6], whereGi has innovation number i, and weightsW1 = [0.0, 0.0, 0.0, 0.0, 0.0]
and [1.0, 1.0, 1.0, 1.0, 1.0]. For simplicity, we leave out activation function and whether a gene
is activated or not. Assuming that N1 is more fit, crossover of N1 and N2 yields the sequence
of genes [G0, G1, G4, G6] with weights [random(1.0, 0.0), 0.0, 0.0, 0.0], where random(A,B)
randomly selects one from (A,B) with equal chance.

3.3 Mutation

Mutation consist of two mutating operations that could introduce new genetic information into
the gene pool.

• add connection adds a connection between two nodes in an individual, essentially con-
structing a gene.

• add node adds a node n between a connection of two nodes a, b. This operation deac-
tivates the affected gene responsible for the connection. Two genes are created a, n and
n, b

NEAT-Python [14] implements NEAT in the programming language Python. It introduces
two more mutating operations

• remove connection reverses the add operation.

• remove node removes a node and all connections to and from it.

Mlagents [10] is a toolkit for communicating with agents in the game engine Unity [8], and
implements reinforcement learning to train an agent to drive through a track while maximising
rewards. It uses the Unity Karting Microgame template [11] for training. The karting template
provides with the necessary vehicles, input/output-handling, physics computation that mlagents
can use to run the simulations.
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Figure 1: Visualisation of the spacial awareness of the agent.

4 Implementation

4.1 The Agent

Inputs The kart agent have 12 ray casting sensors pointing in different directions from the
centre of the cart. These sensors return the hit distance of the ray casting, if within reach
of the maximum hit distance of the particular ray sensor. The sensors are rotated, allowing
the agent to get some idea of its surroundings, as visualised in figure 1. The distance values
from the sensors are sent to the trainer, together with local velocity, forward velocity and
acceleration of the cart.

Outputs The available controls of the kart agent are

• Gas (Boolean)

• Reverse (Boolean)

• Left Turn (Float)

• Right Turn (Float)

These instructions can be fed to the agent by an positive integer array of size 2.

Rewards A subgoal is a region defined on the track. Rewards are computed from how the
agent drives, increasing by covering distance towards the next subgoal and reaching the subgoal,
and decreasing by driving away from the next subgoal and by crashing into a wall.

4.2 NEAT Implementation

NEAT is used to find an ANN that manages to navigate through racing tracks without crashing.
A trained network must be able to respond appropriately to the sensory inputs so that it manages
to navigate through racing tracks. It has more time to accumulate rewards if it maintains a
high velocity. but it must also be able to handle the curves without crashing into the wall.
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4.2.1 Hyperparameters in config

Initial network complexity of created individuals

• num hidden is the number of hidden nodes.

• num inputs is the number of input nodes.

• num outputs is the number of output nodes.

Network alteration of individual during mutation

• node add prob is the probability that a mutation adds a node.

• node delete prob is the probability that a mutation removes a node.

• conn add prob is the probability that a mutation adds a connection.

• conn delete prob is the probability that a mutation removes a connection.

Gene alteration of individual during mutation

• weight mutate power is the ratio of which the weight can be altered in a mutation.

• weight mutate rate is the probability that a mutation alters a weight.

• bias mutate power is the ratio of which the bias can be altered in a mutation.

• bias mutate rate is the probability that a mutation alters a bias.

All individuals have 15 input nodes and 4 output nodes, corresponding to the 15 observa-
tions received from the agent, and two binary strings used to compute the action fed to the
agent. An initial population of randomly constructed neural networks is generated, limited to
num hidden, num input and num output. Each individual in the population is evaluated
by the reward it gets from controlling the agent for t seconds, or by d decisions steps. Once all
individuals have been evaluated, they are ranked by reward and perform cloning, crossover
and mutation with regards to probabilities, some of which are based on their ranking.

4.3 Cloning

Cloning passes over the genes of an individual to the next generation without alteration. Given
a ranking of the individuals in a population, the elite consist of the k highest ranked individuals.
The elite are cloned, and cloning may occur of the remaining population if they are not selected
for crossover or mutation.

4.4 Crossover

Unlike conventional crossover, NEAT crossover only generates a single individual. To com-
pensate for any would-be population loss, each individual mates with two other individuals so
that the next generation contains the same number of individuals.

4.5 Mutation

Mutation is done proportional to the rank of an individual. The less fit an individual is, the
more desirable we find it for the individual to change their genes, in hope that it will attain
something more competitive.
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4.6 Generating New Population

In the following sections two different population generation algorithms will be described. These
algorithms were developed in tandem for experimental purposes using fundamentally different
approaches.

4.6.1 Purging The Weak

The population generation algorithms is heavily inspired by a genetic selection algorithm called
GNS detailed in [16]. Our population generation algorithms starts off by ranking our individuals
by fitness. The surviving population is selected so that their survival chance is proportional to
their fitness rank. Survivors will mate to create offspring for the next generation using crossover.
The mating process is done by iterating through the list of survivors, starting with the fittest.
For each iteration another parent is chosen for crossover. The second parent must be less fit
than the first parent and is chosen randomly with a weighted chance proportional to its rank.
Offspring will also have a chance of mutating proportional to the rank of the first parent. This
is because the child will resemble the first parent more.

4.6.2 No Purging

This method does not create any new individuals other than those of the initial population.
The probability of crossover is fixed, and is performed downwards, meaning that an individual
with rank r selected for crossover breeds with the individual of rank r+1. Mutation probability
increases with rank, having less fit individuals mutate by higher chance. An individual is either
cloned by elitism, crossed, mutated else cloned. Note that cross and mutate operators are not
applied on the same individual in one generation. Essentially, for each individual Gi we have a
crossover probability pc and a mutation probability pmi, optimally subject to pc + pmi ≤ 1. For
each individual, other than the elite, we randomise a number n ∈ [0, 1].

• if n < pc then Gi is crossed

• if pc ≤ n < (pc + pmi) then Gi is mutated.

• else Gi is cloned.

5 Evaluation

All experiments discussed in this section use the population generation algorithm with purging.
It was determined that the purging algorithm had vastly superior performance. Initial testing
of the non-purging algorithm did not show a positive trend in average fitness over time. Due to
this, no further experimentation was carried out using the non-purging algorithm.

All experiments were run on: Windows 11 on a Ryzen 9 3900X 24-thread 142-core CPU
with an NVIDIA GTX 1080 GPU Initial network complexity of created individuals had 15
input nodes and 4 output nodes. The remaining hyper-parameters were chosen by various
experimentation, from which the following gave the most promising results.

• num hidden = 10

• node add prob = 0.02

• node delete prob = 0.02

• conn add prob = 0.5
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• conn delete prob = 0.5.

• weight mutate power = 0.1

• weight mutate rate = 0.9

• bias mutate power = 0.1

• bias mutate rate = 0.1

5.1 Results

Figure 2: The track that was used for evaluation

Figure 3: Metrics for a run with 50 in population, over 10 generations
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With the selected generation population and configuration parameters, we managed to evolve
individuals that could drive an entire lap through the track without crashing into the wall.
A theoretically optimal individual would barely finish a lap within our configured timeout,
equating to approximately 380 in fitness. As seen in figure 3, the top performers managed to
hit optimum after circa 6 generations. Also, around that time training seemed to converge as
the average performance started to stall.

5.2 Problems current scoring

Our rewards calculation is based on how many checkpoints the agents can reach withing a set
amount of decisions frames. An agent will send a decision every decision frame which
occurs every fifth physics calculation step. An agent progressing towards the next checkpoint
also give partial credit, to differentiate individuals that reach the same number of checkpoints.
Finally, agents are heavily penalised if they hit a wall. But, this scoring method is not enough
as we get a mixture of individuals that score well but that are not necessarily desirable. We
divide individuals into safe and risky individuals, where safe ones (i) tend to follow the road
without oscillations and (ii) take curves without getting close to the walls. Risky individuals are
those who break any of those two conditions. The risky individuals are not only undesirable due
to subjective reasons we may construct, such as the driving being ugly or unsafe, but we have
noticed that risky individuals are less stable than safe ones. By this, we mean by the chance that
the individual will be able to reproduce the same outcome in successive runs. Risky individuals
have a greater chance of crashing or getting stuck in a wall.

Figure 4: Example of how a safe individual handles a curve
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Figure 5: Example of how a risky individual handles a curve

6 Related Work

NEAT is used for usage with Unity to train a ANN to orient a vehicle to follow a leading vehicle
in [7]. They use visual input to find the vehicle to follow, using chromatic data for navigation.
They use their trained network in a physical AC-car. They do not use Python-NEAT for the
training backend, but communicate with Unity using mlagents, therefore their configuration
were of some value for us.

A Genetic Natural Selection (GNS) algorithm that concern fitness specification, elim-
ination algorithm and repopulation process is proposed in [16]. The most significant part
of GNS is that it eliminates half of the population with a weighted random distribution, based
on rank. The surviving population reproduces randomly in order to fill out the gaps of those
who were eliminated. This elimination and repopulation method is integrated into out first
population generation algorithm.

Another approach [2] uses a virtual camera as the sensory input in a world simulated in Unity
to compare the performance of various Neuroevolution algorithms to Double Deep Q-Learning
(DDQN). The performance is determined by how close the car stays to the middle of the lane
and the distance driven. The results show that the genetic algorithms outperform DDQN in all
performance metrics.

A paper [6] introduces a new way to use search-based algorithms in the field of self-driving by
procedurally generating roads to benchmark self-driving car models in a simulated environment.
The object of the road-generating model is to reveal flaws in a self-driving model relating to
lane-keeping. A fitness value based on how far the car drives from the middle of the lane
determines which genetic operations will be used to create a new generation of roads to test.
The results conclude that search-based procedural generation can be used to create test suites
for exposing safety flaws related to lane-keeping.

Using theory from image analysis and computer vision, [3] uses image-data from a camera to
identify certain properties of the road such as middle, side lanes, and other painted lines, in order
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to navigate efficiently and at high speeds through paved roads. Techniques from image analysis
such as edge detection and classification are done in real-time during driving. The autonomous
system is tested on a virtual environment called Pro-Civic that allows for running multi-vehicle
simulations. The results show that their method can control a vehicle using simple fuzzy-logic
laws, and is sufficiently stable up to speeds of 70 kilometres per hour in sharp turns.

7 Discussion

We often encountered the issue that unaltered individuals would perform vastly different between
generations. This was clear in some plots seeing that the top performer, whom is cloned due
to elitism, would follow up with a lower score and sometimes even by a substantial amount.
Initially we suspected that the genetics of the top performer would not be preserved to the sub-
sequent generation, but was falsified upon verification that the genetics were indeed unchanged.
Upon closer inspection, it was discovered that a network would not always act exactly the same
after resetting the simulation. Although it tended to act in an expected fashion, being how
it acted previously. But by no means was this behaviour fully deterministic, having sporadic
uncalled diversions out of the blue. Our method of combating this consisted of

• Forcing the car to reset all of its properties to default values on episode start

• Resetting the sensory inputs

• Ensuring that the game always run at 50 or more fps to not throttle the physics compu-
tations.

Although the unintended behaviour have been minimised, we have no way of ensuring that this
never occurs below our radar. We suspect that this still happens from time to time, which
results in some random unfair worsening of one or more individuals, potentially slowing down
convergence. For instance, a fairly potent individual N is unfairly affected by this performance
anomaly, resulting in a lower ranking by the end of the generation evaluation, therefore it is
either crossed with a lesser individual or is directly altered by mutation, whose rate increases by
rank, thus leading to offspring which we can not expect to perform equally to N . Of course, this
could by chance cause the offspring ofN to become better than before, but sinceN either crossed
with a significantly less fit individual, or it mutated, whose effects can go in any direction, we
assume that the more probable case is that it turns out for the worse.

We also wanted to each run of an individual to be as fair as possible. Initially, we let each
individual run for a fixed number of seconds. However, CPU throttling during training would
cause individuals to run for a different number of decision steps, resulting in unfair advantages
for those who were not affected negatively by the CPU. We made timeout not dependent on
system time, and instead on number of fixedUpdate() calls. Unity calls fixedUpdate() each
physical computation frame, which we used as our unit time. Each individual now have a number
n of decision steps it can do in its run. A decision step is performed each fixedUpdate().

8 Conclusions

NEAT proved to be a suitable genetic algorithm for evolving non-static ANNs to drive a car
using spatial awareness. Training would converge faster if individual performance was consistent.
The non-deterministic simulation in Unity presents a challenge for this sort of project.
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9 Future Work

The main contribution of our work consisted of showing that NEAT indeed is appropriate for
the automated driving problem within the limits of a racing track. It is left for future work to
make a fair performance assessment and comparison of RL, NE and NEAT for this task. Also,
we also want to see this being used for vehicles in real-life, and not just in virtual worlds where
the majority of projects reside. But for that to happen, we would probably have to combine it
with image analysis so that more detailed observations could be made from the sensory inputs
of the vehicle, much like how its done for imitation learning.

Training multiple agents to race each other. Get to the finish line as fast as possible without
crashing into the wall, or any other opponent.

It would also be desirable to design a scoring function that penalises risky individuals and
rewards safe individuals so that they are not scored equally even though if they make it equally
far on the track. This would not only fix the problem visualised in figure 4 and 5, but it would
also push the trainer to tune the ratio of risky and safe behaviour. Although figure 1 shows a
safe individual, it is probably not the best way to handle the curve, in the context of racing for
instance.

We probably want an individual that does not oscillate, but that also drives a bit closer
to the wall in the inner curve to save time. An idea to promote more safe driving is to add
some wall distance check at every checkpoint, a safeness score, which is included in the
rewards computation. Checkpoints can be located anywhere on the track, therefore by placing
some in curves could ensure that risky individuals do not gain the same reward from that
particular checkpoint. On the other hand, we must also tune the rewards gained from reaching
a checkpoint and progressing towards the next checkpoint to promote incentives of driving a
bit riskier than of those who gain maximum score of safeness at each checkpoint. If we do

Figure 6: This individual still drives desirably safe, but subjectively takes the curve much better
than the individual in figure 4

not want to directly penalise the individuals for driving near the walls as we would do in the
previous solution, another idea would to penalise the oscillating driving behaviour, essentially
an incentive for individuals to change in turning direction as little as possible. This could
minimise the oscillations without dictating how individuals should navigate the track.
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[7] Joseph Ricardo González Núñez. Design of a self-driving mini-robot for indoor navigation
using evolutionary artificial intelligence algorithms. B.S. thesis. 2020. url: https://
201.159.223.86/bitstream/123456789/184/1/ECMC0028.pdf (visited on
27/05/2022).

[8] John K Haas. “A history of the unity game engine”. In: (2014).

[9] Shantanu Ingle and Madhuri Phute. “Tesla autopilot: semi autonomous driving, an uptick
for future autonomy”. In: International Research Journal of Engineering and Technology
3.9 (2016), pp. 369–372.

[10] Arthur Juliani et al. “Unity: A General Platform for Intelligent Agents”. In: CoRR
abs/1809.02627 (2018). arXiv: 1809.02627. url: http://arxiv.org/abs/1809.
02627.

[11] Karting Microgame. url: https : / / learn . unity . com / project / karting -
template (visited on 26/05/2022).

[12] B Ravi Kiran et al. “Deep reinforcement learning for autonomous driving: A survey”. In:
IEEE Transactions on Intelligent Transportation Systems (2021).

[13] Enrique Marti et al. “A review of sensor technologies for perception in automated driving”.
In: IEEE Intelligent Transportation Systems Magazine 11.4 (2019), pp. 94–108.

[14] Alan McIntyre et al. neat-python. url: https://github.com/CodeReclaimers/
neat-python (visited on 21/06/2022).
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